Home

Resnet

【问题来了】为什么随着网络层级越深,模型效果却变差了呢? 下图是一个简单神经网络图,由输入层、隐含层、输出层构成: 回想一下神经网络反向传播的原理,先通过正向传播计算出结果output,然后与样本比较得出误差值Etotal 根据误差结果,利用著名的“链式法则”求偏导,使结果误差反向传播从而得出权重w调整的梯度。下图是输出结果到隐含层的反向传播过程(隐含层到输入层的反向传播过程也是类似): 通过不断迭代,对参数矩阵进行不断调整后,使得输出结果的误差值更小,使输出结果与事实更加接近。 从上面的过程可以看出,神经网络在反向传播过程中要不断地传播梯度,而当网络层数加深时,梯度在传播过程中会逐渐消失(假如采用Sigmoid函数,对于幅度为1的信号,每向后传递一层,梯度就衰减为原来的0....

Read more